10 research outputs found

    Configuration Management of Distributed Systems over Unreliable and Hostile Networks

    Get PDF
    Economic incentives of large criminal profits and the threat of legal consequences have pushed criminals to continuously improve their malware, especially command and control channels. This thesis applied concepts from successful malware command and control to explore the survivability and resilience of benign configuration management systems. This work expands on existing stage models of malware life cycle to contribute a new model for identifying malware concepts applicable to benign configuration management. The Hidden Master architecture is a contribution to master-agent network communication. In the Hidden Master architecture, communication between master and agent is asynchronous and can operate trough intermediate nodes. This protects the master secret key, which gives full control of all computers participating in configuration management. Multiple improvements to idempotent configuration were proposed, including the definition of the minimal base resource dependency model, simplified resource revalidation and the use of imperative general purpose language for defining idempotent configuration. Following the constructive research approach, the improvements to configuration management were designed into two prototypes. This allowed validation in laboratory testing, in two case studies and in expert interviews. In laboratory testing, the Hidden Master prototype was more resilient than leading configuration management tools in high load and low memory conditions, and against packet loss and corruption. Only the research prototype was adaptable to a network without stable topology due to the asynchronous nature of the Hidden Master architecture. The main case study used the research prototype in a complex environment to deploy a multi-room, authenticated audiovisual system for a client of an organization deploying the configuration. The case studies indicated that imperative general purpose language can be used for idempotent configuration in real life, for defining new configurations in unexpected situations using the base resources, and abstracting those using standard language features; and that such a system seems easy to learn. Potential business benefits were identified and evaluated using individual semistructured expert interviews. Respondents agreed that the models and the Hidden Master architecture could reduce costs and risks, improve developer productivity and allow faster time-to-market. Protection of master secret keys and the reduced need for incident response were seen as key drivers for improved security. Low-cost geographic scaling and leveraging file serving capabilities of commodity servers were seen to improve scaling and resiliency. Respondents identified jurisdictional legal limitations to encryption and requirements for cloud operator auditing as factors potentially limiting the full use of some concepts

    Getting started with sensors

    No full text

    Make : Arduino Bots and Gadgets

    No full text

    Make a mind-controlled Arduino robot

    No full text

    Make: Sensors

    No full text

    Extracellular vesicles and high‐density lipoproteins : Exercise and oestrogen‐responsive small RNA carriers

    No full text
    Decreased systemic oestrogen levels (i.e., menopause) affect metabolic health. However, the detailed mechanisms underlying this process remain unclear. Both oestrogens and exercise have been shown to improve metabolic health, which may be partly mediated by circulating microRNA (c-miR) signalling. In recent years, extracellular vesicles (EV) have increased interest in the field of tissue crosstalk. However, in many studies on EV-carried miRs, the co-isolation of high-density lipoprotein (HDL) particles with EVs has not been considered, potentially affecting the results. Here, we demonstrate that EV and HDL particles have distinct small RNA (sRNA) content, including both host and nonhost sRNAs. Exercise caused an acute increase in relative miR abundancy in EVs, whereas in HDL particles, it caused an increase in transfer RNA-derived sRNA. Furthermore, we demonstrate that oestrogen-based hormonal therapy (HT) allows the acute exercise-induced miR-response to occur in both EV and HDL particles in postmenopausal women, while the response was absent in nonusers.peerReviewe

    MicroRNAs in extracellular vesicles in sweat change in response to endurance exercise

    No full text
    Abstract Background: To date, microRNAs (miRs) carried in extracellular vesicles (EVs) in response to exercise have been studied in blood but not in non-invasively collectable body fluids. In the present study, we examined whether six exercise–responsive miRs, miRs-21, -26, -126, -146, -221, and -222, respond to acute endurance exercise stimuli of different intensities in sweat. Methods: We investigated the response of miRs isolated from sweat and serum EVs to three endurance exercise protocols: (1) maximal aerobic capacity (VO2max), (2) anaerobic threshold (AnaT), and (3) aerobic threshold (AerT) tests. Sauna bathing was used as a control test to induce sweating through increased body temperature in the absence of exercise. All protocols were performed by the same subjects (n = 8, three males and five females). The occurrence of different miR carriers in sweat and serum was investigated via EV markers (CD9, CD63, and TSG101), an miR-carrier protein (AGO2), and an HDL-particle marker (APOA1) with Western blot. Correlations between miRs in sweat and serum (post-sample) were examined. Results: Of the studied miR carrier markers, sweat EV fractions expressed CD63 and, very weakly, APOA1, while the serum EV fraction expressed all the studied markers. In sweat EVs, miR-21 level increased after AerT and miR-26 after all the endurance exercise tests compared with the Sauna (p < 0.050). miR-146 after AnaT correlated to sweat and serum EV samples (r = 0.881, p = 0.004). Conclusion: Our preliminary study is the first to show that, in addition to serum, sweat EVs carry miRs. Interestingly, we observed that miRs-21 and -26 in sweat EVs respond to endurance exercise of different intensities. Our data further confirmed that miR responses to endurance exercise in sweat and serum were triggered by exercise and not by increased body temperature. Our results highlight that sweat possesses a unique miR carrier content that should be taken into account when planning analyses from sweat as a substitute for serum
    corecore